

BHPS Calculations Policy

January 2018

What is Mastery at BHPS?

- High expectations all pupils succeed with the same objective with support and challenge where appropriate
- Differentiation defined by deepening knowledge or supporting/ intervening not different concepts or objectives
- New concepts introduced in the context of a problem, story, picture
- Problems represented with concrete or pictorial resources
- An expectation that children will move through the concrete, pictorial, abstract stages
- A variety of methods taught and calculations represented in different ways to promote understanding. E.g. part whole, bar.
- Explicit teaching of vocabulary
- Effective, precise questioning that regularly assesses where pupils are at
- An emphasis on children explaining their reasoning and calculations clearly
- Use of stem sentences
- Opportunities for pre-teach and post-teach to prepare children and address misconceptions
- Practice and consolidation have a place in lesson design (e.g. warm up with fluency activities to hone skills that will be needed in the lesson)
- Reasoning and problem solving is an entitlement for all abilities
- Intervention at the point of need
- More whole class teaching at KS1 with children being as active as possible with apparatus in their places
- Leading to a variation: 'Do it' (independent and varied fluency in different contexts) 'Secure it' (shift of original problem to different contexts, comparisons of different problems) 'Deepen it' (Explain, justify, prove ideas. True/False; always/sometimes/never)

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Find a total number of items in two groups by counting all of them. Finding one more than a given number. Number bonds using quantities and objects to add two single numbers Counting on	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 100.	Adding three sing digits. To combine two numbers.	le Column method- regrouping. (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column method- regrouping. Use of place value counters for adding decimals.	Column method- regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
Subtraction	Find one less from a group of objects rather than a number. Number bonds Counting back	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10	Column method with regrouping.	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.
<u> Multiplicatio</u>	Doubling	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number) Decimals x 1 digit or integer
Division	Sharing objects into groups	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column.

The Four Operations - Whole School Approach through CPA (Concrete, Pictorial, Abstract)

<u>Addition</u>

Key language which should be used in the Primary Phase:

sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to', ' is the same as', grouping, regrouping, inverse operation, increase, number bonds, partition

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		4 + 3 = 7 (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes	A bar model which encourages the children	The abstract number line:
or numicon	to count on	What is 2 more than 4? What is the sum
	4 ?	of 4 and 4? What's the total of 4 and 2? 4 + 2
Regrouping to make 10 by using ten frames	Children to draw the ten frame and	Children to develop an understanding of
and counters/cubes or using numicon: 6 + 5	counters/cubes	equality e.g 6 + \Box = 11 and 6 + 5 = 5 + \Box 6 + 5 = \Box + 4

Addition - continued -

Base 10 or Dienes apparatus

Addition continued

Subtraction

Key language which should be used in the Primary Phase:

take away, less than, the difference, subtraction, minus, fewer, decrease, inverse operation, number bonds,

'7 take away 3', ' the difference is 4', the difference between, exchange,

Subtraction continued

Finding the difference (using cubes,	Children to draw the cubes/other concrete	Find the difference between 8 and 6.
numicon or Cuisenaire rods, other	objects which they have used	
objects can also be used)		8 - 6, the difference is ?
? ? ? ? ? ?	XXXXXXXX XXXXXX Use of the bar model	Children to also explore why 9 - 7 = 8 - 6 (the difference, of each digit, has changed by 1 do the difference is the same- this will help when solving 10000-9987)
Making 10 (using numicon or ten frames)	Children to present the ten frame pictorially	14 - 5 = 9 You also want children to see
		related facts e.g. 15 - 9 = 5 Children to represent how they have solved it e.g. 14 - 5 = 9 14 is made up of 5, 5 and 4 so I can subtract one 5 to be left with
Children could also do this by		5 5 4 and 5
subtracting a 5 from the 10.		14 - 5 = 9 5 is made up of 4 and 1 so I can subtract 4 to make 10 and then 1 4 1 to get to 9
Column method (using base 10)	то	48 - 7 =
48-7	 	4 8 - 7 4 I

Subtraction continued

Multiplication

Key language which should be used:

Double, times, twice, multiplied by, the product of, product, groups of, arrays, lots of, repeated addition, repeated grouping, 'is the same as', multiple, factor, commutative law, distributive law, associative law, scaling, partition

Concrete	Pictorial	Abstract
Concrete Repeated grouping/repeated addition (does not have to be restricted to cubes) 3 x 4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. XX XX XX XX XX XX Use of a bar model for a more structured method	Abstract 3 × 4 4 + 4 + 4
Use number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g: 0 4 8 12	Abstract number line $3 \times 4 = 12$ 4 8 12
Use arrays to illustrate commutativity (counters and other objects can also be used) 2 x 5 = 5 x 2	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. 2 × 5 = 10 5 × 2 = 10 2 + 2 + 2 + 2 + 2 = 10 5 + 5 = 10

Partition to multiply (use numicon, base	Children to represent the concrete manipulatives	Children to be encouraged to show the		
10, Cuisenaire rods)	in a picture e.g. base 10 can be represented like:	steps they have taken		
4 × 15		4 × 15		
		10 5		
	15x4 T O	10 x 4 = 40		
CC		5 × 4 = 20		
	XXXXX	40 + 20 = 60		
	XXXXX	A number line can also be used		
		+10 +10 +10 +10 +5 +5 +5 +5		
	<xxxxx< td=""><td>10×4 5×4</td></xxxxx<>	10×4 5×4		
Formal column method with place value	Children to represent the counters in a	Children to record what it is they are		
counters or base 10 (at the first stage-	pictorial way	doing to show understanding		
no exchanging) 3 x 23	Tens Ones	3 × 23 3 × 20 = 60		
		7 3×3= 9		
Make 23, 3 times. See how many ones,	11 1 1 1 1 1 1	20 3 60 + 9= 69		
then how many tens	1 1 1 1 1 1 1	22		
	6 9	23		
		× 3		
		69		
Formal column method with place value	Children to represent the counters/base 10,	6 x 23		
counters (children need this stage,	pictorially e.g. the image below.	6 × 3 = 18		
initially, to understand how the column		6 × 20 = 120		
		1		

6 x 23 Step 1: get 6 lots of 23 Step 2: 6 x 3 is 18. Can I make an exchange? Yes! Ten ones for one ten Step 3: 6 x 2 tens and my extra ten is 13 tens. Can I make an exchange? Yes! Ten tens for one hundred Step 4- what do I have I each column?	Hundreds Tens Ones	The aim is but the ch how it wor 6 x 2 <u>×</u> 1	23 = 23 = 23 = 23 = 23 = 23 = 23 = 23 =	et to n nee	the d to	formal m o understa	ethod 1nd
When children start to multiply 3d x 3d ar	d 4d x 2d etc, they should be confident with the ab	ostract:		1	2	4	
To get 744 children have solved 6 x 124			×		2	6	
To get 2480 they have solved 20 x 124				. 7	4	4	
			2	-4	8	0	
			3	2	2	4	
		-	1	1			
			A	nsw	er: 3	3224	

Fluency variation	Fluency variation, different ways to ask children to solve 6 x 23: Mai had to swim 23 Image: Base of the solution of the so					
23 23 23 23 23 23 23 ? With the counters, prove that 6 \times 23 = 138 . Why is 6 \times 23 = 23 \times 6?	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? Tom saved 23p three days a week. How much did he save in 2 weeks?	Find the product of 6 and 23 $6 \times 23 =$ $6 \times 23 =$ 6×23 7×6 7×6 7×6	What's the calculation? What's the answer? 000000000000000000000000000000000000			

Multiply multi- digit numbers up to 4 digits Using decimal places in formal written methods	Is the statement true or false?	4.56	x 7
6 a. £ 2.23 b.£ 7.76 × 5 × 5 11.15 38.80	Using the grid method	4 0.5 0.06	7 28 3.5 4.2
3 2		answer is 35.7.	I anya says her

Division

Key language which should be used in the Primary Phase:

share, group, divide, divide by, half, 'is equal to', 'is the same as', remainders, repeated subtraction, repeated grouping, chunking, exchange, ratio, quotient, divisor, partition

Key Language

sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to', 'is the same as', grouping, regrouping, inverse operation, increase, take away, less than, the difference, comparing and associated language, whole number, integer, subtraction, minus, fewer, decrease, number bonds, calculation, operation, '7 take away 3', ' the difference is 4', the difference between, exchange, double, times, twice, multiplied by, the product of, product, groups of, arrays, lots of, repeated addition, 'is the same as', multiple, factor, commutative law, distributive law, associative law, scaling, compensation, partitioning, related facts, inverse operation, repeated grouping (aggregation), HTO - (hundreds, tens and ones and above~ up to millions), share, group, divide, divide by, half, remainders, repeated subtraction, chunking, exchange, ratio, guotient, divisor, dividend, remainder

Types of Models Arrays **Bar Model** (Singapore Bar Model) Part Whole Model Formal Column addition Formal Column subtraction **Grid** method - (multiplication) Formal column multiplication - long or short (compact) Formal Division - Long and short methods (compact)