BHPS Calculations Policy
Janwary 2018

What is Mastery at BHPS?

- High expectations - all pupils succeed with the same objective with support and challenge where appropriate
- Differentiation defined by deepening knowledge or supporting/ intervening not different concepts or objectives
- New concepts introduced in the context of a problem, story, picture
- Problems represented with concrete or pictorial resources
- An expectation that children will move through the concrete, pictorial, abstract stages
- A variety of methods taught and calculations represented in different ways to promote understanding. E.g. part whole, bar.
- Explicit teaching of vocabulary
- Effective, precise questioning that regularly assesses where pupils are at
- An emphasis on children explaining their reasoning and calculations clearly
- Use of stem sentences
- Opportunities for pre-teach and post-teach to prepare children and address misconceptions
- Practice and consolidation have a place in lesson design (e.g. warm up with fluency activities to hone skills that will be needed in the lesson)
- Reasoning and problem solving is an entitlement for all abilities
- Intervention at the point of need
- More whole class teaching at KS1 with children being as active as possible with apparatus in their places
- Leading to a variation: 'Do it' (independent and varied fluency in different contexts) 'Secure it' (shift of original problem to different contexts, comparisons of different problems) 'Deepen it' (Explain, justify, prove ideas. - True/False; always/sometimes/never)

The Four Operations - Whole School Approach through CPA (Concrete, Pictorial, Abstract)

	YFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \frac{}{0} \\ & \frac{0}{ㄹ} \\ & \frac{0}{0} \\ & \frac{1}{4} \end{aligned}$	Find a total number of items in two groups by counting all of them. Finding one more than a given number. Number bonds using quantities and objects to add two single numbers Counting on	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 100	Adding three sing digits. To combine two numbers.	le Column methodregrouping. (up to 3 digits).	Column method- regrouping. (up to 4 digits)	Column methodregrouping. Use of place value counters for adding decimals.	Column methodregrouping. Abstract methods. Place value counters to be used for adding decimal numbers.
	Find one less from a group of objects rather than a number. Number bonds Counting back	Taking away ones Counting back Find the difference Part whole model Make 10 using the ten frame	Counting back Find the difference Part whole model Make 10	Column method with regrouping.	Column method with regrouping. (up to 4 digits)	Column method with regrouping. Abstract for whole numbers. Start with place value counters for decimals- with the same amount of decimal places.	Column method with regrouping. Abstract methods. Place value counters for decimals- with different amounts of decimal places.
	Doubling	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays $2 d \times 1 d$	Column multiplicationintroduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number) Decimals $\times 1$ digit or integer
$\frac{\overline{0}}{\cdot \frac{0}{\hat{n}}}$	Sharing objects into groups	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column.

Page | 2

Addition

Key language which should be used in the Primary Phase:
sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' , is the same as', grouping, regrouping, inverse operation, increase, number bonds, partition

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? 4+2
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of $\begin{aligned} & \text { equality e.g } 6+\square=11 \text { and } \\ & 6+5=5+\square \quad 6+5=\square+4 \end{aligned}$

Addition - continued -

Base 10 or Dienes apparatus

TO + O using base 10. Continue to develop understanding of partitioning and place value $41+8$	Children to represent the concrete using a particular symbol e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $+\frac{41}{49}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value and use this to support addition. Begin with no exchanging. $36+25$	This could be done one of	Looking for ways to make 10
1		Formal method: 1
		$\begin{array}{r} 36 \\ +\quad 25 \end{array}$

Addition continued

the image below

If the children are completing a word problem, draw a bar model to represent what it's asking them to do

$?$	
243	368

$$
\begin{array}{r}
111 \\
243 \\
+\quad 368 \\
\hline 611 \\
\hline
\end{array}
$$

Leading to| decimal addition

1	1		
2	4	3	
$+\quad 3$	6	.	8
6	1	.	1

Fluency variation, different ways to ask children to solve 21+34:

Sam saved $£ 21$ one week and $£ 34$ another. How much did he save in total?	21
$21+34=55$. Prove it! (reasoning but the children need to be fluent in representing this)	$21+34=$
	$\square=21+34$

What's the sum of twenty one and thirty four?

Always use missing digit problems too:

Tees	chat
$\odot \odot$	\bigcirc
$\odot \odot \odot$	$?$
$?$	4

Subtraction

Key language which should be used in the Primary Phase:
take away, less than, the difference, subtraction, minus, fewer, decrease, inverse operation, number bonds,
'7 take away 3', ' the difference is 4 ', the difference between, exchange,

Subtraction continued

Subtraction continued

Multiplication

Key language which should be used:
Double, times, twice, multiplied by, the product of, product, groups of, arrays, lots of, repeated addition, repeated grouping, 'is the same as', multiple, factor, commutative law, distributive law, associative law, scaling, partition

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x X & X X & X X \\ X X & X X & X X \end{array}$ Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

6×23 Step 2: 6×3 is 18 . Can I make an exchange? Yes! Ten ones for one ten.... Step 3: 6×2 tens and my extra ten is 13 tens. Can I make an exchange? Yes! Ten tens for one hundred... Step 4- what do I have I each column?	Hundreds	The aim is to get to the formal method but the children need to understand how it works. $6 \times 23=$ 23 $\frac{\times 6}{\times 138}$
When children start to multiply 3d $\times 3$ d To get 744 children have solved 6×124 To get 2480 they have solved 20×124	$4 \mathrm{~d} \times 2 \mathrm{~d}$ etc, they should be confid	 $\mathbf{1}$ $\mathbf{2}$ $\mathbf{4}$ \mathbf{x} $\mathbf{2}$ $\mathbf{6}$ $-\mathbf{7}$ $\mathbf{4}$ 4 1 2 4 $\mathbf{2}$ $-\mathbf{4}$ $\mathbf{8}$ $\mathbf{0}$ $\mathbf{3}$ $\mathbf{2}$ $\mathbf{2}$ $\mathbf{4}$ 1 1 Answer: 3224

Fluency variation, different ways to ask children to solve 6×23 :

Multiply multi- digit numbers up to 4 digits Using decimal places in formal written methods			Is the statement true or false?	4.56×7	
$6 a$					7
			Using the grid method	4	28
	E2.23	b.t 7.76		0.5	3.5
	$\begin{array}{r}\text { E } 23 \\ \times \quad 5 \\ \hline 115\end{array}$	$\times \quad 5$		0.06	4.2
	11.15	38.80		After adding up, Tanya says her answer is 35.7 .	
	1	38			

Division

Key language which should be used in the Primary Phase:
share, group, divide, divide by, half, 'is equal to', 'is the same as', remainders, repeated subtraction, repeated grouping, chunking, exchange, ratio, quotient, divisor, partition

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
$2 \mathrm{~d} \div 1 \mathrm{~d}$ with remainders $13 \div 4=3$ remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4=3$ remainder 1 Children to count their times tables facts in their heads

Key Language

sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' , 'is the same as', grouping, regrouping, inverse operation, increase, take away, less than, the difference, comparing and associated language, whole number, integer, subtraction, minus, fewer, decrease, number bonds, calculation, operation, ' 7 take away 3', 'the difference is 4 ', the difference between, exchange, double, times, twice, multiplied by, the product of, product, groups of, arrays, lots of, repeated addition, 'is the same as', multiple, factor, commutative law, distributive law, associative law, scaling, compensation, partitioning, related facts, inverse operation, repeated grouping (aggregation), HTO - (hundreds, tens and ones and above~ up to millions), share, group, divide, divide by, half, remainders, repeated subtraction, chunking, exchange, ratio, quotient, divisor, dividend, remainder.

Types of Models

Arrays
Bar Model (Singapore Bar Model)

Part Whole Model

Formal Column addition

Formal Column subtraction

Grid method - (multiplication)

Formal column multiplication - long or short
(compact)
Formal Division - Long and short methods
(compact)

