Bramcote Hills Primary School
'Make the future better for all'

Curriculum Depth Map - Maths

Intent:

At BHPS we provide children with a challenging and engaging Maths curriculum by offering a mastery approach, in order to deliver the three aims of the National Curriculum: fluency, reasoning and problem solving. Underpinning this pedagogy is a belief that all children can achieve in maths. We believe in promoting sustained and deepening understanding by employing a variety of mastery strategies. Our approach aims to provide children with full access to the curriculum, enabling them to develop independence, confidence and competence.

By the end of Key Stage 2, we want our children to have developed the necessary skills to make them 'deep thinkers', acquiring mathematical knowledge, skills and understanding that can be recalled quickly, transferred and applied in different contexts. They need to be able to make rich connections across the areas of maths and use their knowledge in other subjects. We aim to create independent mathematicians who are well equipped to apply their learning to the wider world.

Implementation:

We have adopted the White Rose Maths Hub long term approach to maths. The WRMH planning is a national project designed to provide schools with the most up to date processes and procedures in Mathematics teaching and learning. Our aim is to develop a culture of deep understanding, confidence and competence in maths across the whole of our school - a culture that produces strong, secure mathematics within each year group.

Our Maths curriculum is designed to allow children time to think, discuss, practise, explore and embed. This allows time for teaching, practice and repetition - both in a year group and across both key stages. Curriculum coverage is mapped out carefully from Year 1 to Year 6, which allows some key concepts to be developed at a deeper level of learning, understanding and mastery. Fundamental knowledge and skills are covered at key points throughout the primary phase and repeated to allow pupils to build on what has been taught before. Our aim is to ensure that the three core areas of the National Curriculum are covered in all of our lessons: fluency, reasoning and problem solving. We offer the children the opportunity to have varied and frequent practice (varied fluency - VF) of their maths skills, with the focus on their ability to recall and apply their knowledge rapidly and accurately. Reasoning is a key area in all of our lessons. Mathematical vocabulary is an essential part of each lesson and the children need to understand this within the area they are studying and be able to make rich connections across other areas within this subject. Each lesson provides children with the opportunity to reason through their ideas, use their mathematical language to explore a line of enquiry and problem solve routine and non-routine problems. We aim to build problem-solvers of the future and build resilience in our children; essential skills that they can use in all aspects of their learning. Lessons will be planned and a knowledge organiser provided for pupils, which outlines the area to be taught, where the new knowledge and skills fit in with their prior learning, any sticky knowledge they need to understand and key vocabulary they need to learn.

Impact:

Impact is evidenced through:

- Pupils' use and understanding of the identified mathematical vocabulary
- Retaining key knowledge
- Quick recall of facts and procedures
- Demonstrating that they know more all the time
- Low-stakes tests/quizzes
- The flexibility and fluidity to move between different contexts and representations of mathematics.
- The ability to recognise relationships and make connections in mathematics
- High aspirations, which will see them through to further study, work and a successful adult life; particularly girls

Key Stage One

Year 2

Number: Place Value
Number: Addition \& Subtraction
Measurement: Money
Number: Multiplication \& Division
Number: Multiplication \& Division
Statistics
Geometry: Properties of Shape
Number: Fractions
Measurement: Length \& height
Geometry: position and direction
Problem solving
Measurement: Time
Measurement: Mass, capacity and temperature
Investigations

Place Value	
Counting	
Count to and across 100, forwards and backwards, beginning with 0 or 1 , or from a given number	Count in steps of 2, 3 and 5 from 0 , and in tens from any number, forward and backward.
Count numbers to 100 in numerals; count in multiples of twos, fives and tens	
Represent	
Identify and represent numbers using objects and pictorial representations	
Read and write numbers to 100 in numerals	Read and write numbers to at least 100 in numerals and in words
Read and write numbers from 1 to 20 in numerals and words	Identify, represent and estimate numbers using different representations, including the number line
Use \& Compare	
Give a number, identify one more and one less	Recognise the place value of each digit in a two-digit number (tens, ones)
	Compare and order numbers from o up to 100
	Use <, > and = signs
Problems \& Rounding	
	Use place value and number facts to solve problems
Addition \& Subtraction	
Recall, Represent, Use	
Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs	
Represent and use number bonds and related subtraction facts within 20	Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100
	Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
	Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
Calculations	
Add and subtract one-digit and two-digit numbers to 20, including zero	Add and subtract numbers using concrete objects, pictorial representations and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers
Solve Problems	
Solve one-step problems that involve addition and subtraction: using concrete objects and pictorial representations missing number problems such as $7=$? -9	Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their knowledge of mental and written methods

Multiplication and Division	
Recall, Represent, Use	
	Recall and use multiplication and division facts for the 2,5 and 20 multiplication tables, including recognising odd and even numbers
	Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot
Calculations	
	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals $(=)$ signs
Solve Problems	
Solve one-step problems involving multiplication and division, by using concrete objects, pictorial representations and arrays, with support from the teacher	Solve one-step problems involving multiplication and division, by using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts
Fractions	
Recognise and write	
Recognise, find and name a half as one of two equal parts of an object, shape or quantity	Recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity
Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	
Compare	
	Recognise the equivalence of $\frac{2}{4}$ or $\frac{1}{2}$
Calculations	
	Write simple fractions e.g. $\frac{1}{2}$ of $6=3$
Algebra (algebraic thinking $=$ missing number objectives)	
Solve one-step problems that involve addition and subtraction: > using concrete objects and pictorial representations > missing number problems such as $7=$? - 9	Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
Measurement	
Using measures	
Compare, describe and solve practical problems for: > lengths and heights (long (er)/short (er), tall/short, double/half) > mass and weight (heavy/light, heavier than, lighter than) capacity and volume (full/empty, more than, less than, half, half full, quarter) > time (quicker/slower, earlier/later)	
Measure and begin to record the following: > lengths \& heights > mass/weight > capacity and volume > time (hours, minutes, seconds)	Choose and use appropriate standard unis to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels
	Compare and order lengths, mass, volume/capacity and record the results using >, < and =
Money	
Recognise and know the value of different denominations of coins and notes	Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value
	Find different combinations of coins that equal the same amounts of money
	Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change
Time	
Sequence events in chronological order using language (e.g. before, after, next, first, today, yesterday, tomorrow, morning, afternoon and evening)	Compare and sequence intervals of time
Recognise and use language relating to dates including days of the week, weeks, months and years	
Tell the time to the hour and half past the hour and draw hands on a clock face to show these times	Tell and write the time in five minutes, including quarter past/to the hour and draw hands on a clock face to show these times

	Know the number of minutes in an hour and the number of hours in a day
Geometry	

Key Stage Two

Year 3	Year 4	Year 5	Year 6
Number: Place Value Number: Addition \& Subtraction Number: Multiplication \& Division Number: Multiplication \& Division Measurement: Money Statistics Measurement: Length and perimeter Number: Fractions Number: Fractions Measurement: Time Geometry: Properties of Shape Measurement: Mass and Capacity	Number: Place Value Number: Addition \& Subtraction Measurement: Length and perimeter Number: Multiplication \& Division Number: Multiplication \& Division Measurement: Area Number: Fractions Number: Decimals Number: Decimals Measurement: Money Measurement: Time Statistics Geometry: Properties of Shape Geometry: Position and Direction	Number: Place Value Number: Addition \& Subtraction Statistics Number: Multiplication \& Division Measurement: Perimeter \& Area Number: Multiplication \& Division Number: Fractions Number: Decimals \& Percentages Number: Decimals Geometry: Properties of Shape Geometry: Position and Direction Measurement: Converting Units Measurement: Volume	Number: Place Value Number: Addition, Subtraction, Multiplication \& Division Number: Fractions Geometry: Position and Direction Number: Decimals Number: Percentages Number: Algebra Measurement: Converting Units Measurement: Perimeter, Area \& Volume Number: Ratio Geometry: Properties of Shape Problem Solving Statistics/Investigations
Place Value			
Counting			
Count from 0 in multiples of 4, 8,50, and 100; find 10 or 100 more or less than a given number	Count in multiples of 6, 7, 9, 25 and 1000	Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000	
	Count backwards through zero to include negative numbers	Count forwards and backwards with positive and negative whole number, including through zero	
Represent			
Identify, represent and estimate numbers using different representations	Identify, represent and estimate numbers using different representations	Read, write (order and compare) numbers to at least $1,000,000$ and determine the value of each digit	Read, write (order and compare) numbers to at least $1,000,000$ and determine the value of each digit
Read and write numbers up to 1000 in numerals and in words	Read roman numerals to $100(1$ to C) and know that over time, the numeral system changes to include the concept of zero and place value	Read Roman numerals to 1000 (M) and recognise years written in Roman numerals	
Use \& Compare			
Recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, ones)		
Compare and order numbers up to 1000	Order and compare numbers beyond 1000	(Read, write) order and compare numbers to at least $1,000,000$ and determine the value of each digit	(Read, write) order and compare numbers to at least $10,000,000$ and determine the value of each digit
	Find 1000 more or less than a given number		

Problems \& Rounding			
Solve number problems and practical problems involving these ideas	Solve number and practical problems that involve all of the above and with increasingly larger positive numbers	Solve number problems and practical problems that involve all of the below	Solve number and practical problems that involve all of the below
	Round any number to the nearest 10,100 or 1000	Round any number up to $1,000,000$ to the nearest $10,100,1000,10,000,100,000$	Round any whole number to a required degree of accuracy
		Interpret negative numbers in context	Use negative numbers in context and calculate intervals across zero
Addition \& Subtraction			
Recall, Represent, Use			
Estimate the answer to a calculation and use inverse operations to check answers	Estimate and use inverse operations to check answers to a calculation	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	
Calculations			
Add and subtract numbers mentally, including: > a three-digit number and ones > a three-digit number and tens $>$ a three-dig number and hundreds	Add and subtract numbers with up to fourdigits using the formal written methods of columnar addition and subtraction where appropriate	Add and subtract whole numbers with more than four-digits using the formal written methods (columnar addition and subtraction)	Perform mental calculations, including with mixed operations and large numbers
Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction		Add and subtract numbers mentally with increasingly large numbers	Use their knowledge of the order of operations to carry out calculations involving the four operations
Solve Problems			
Solve problems, including missing number problems, using number facts, place value and more complex addition and subtraction	Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
		Solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
Multiplication \& Division			
Recall, Represent, Use			
Recall and use multiplication and division facts for the 3,4 \& 8 multiplication tables	Recall multiplication and division facts for multiplication tables up to 12×12.	Identify multiples and factors, including finding all factor pairs of a number and common factors of two numbers	Identify common factors, common multiples and prime numbers
	Use place value, known and derived facts to multiply and divide mentally, including: > multiplying by 0 and 1 $>$ dividing by 1	Know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

	> multiplying together three numbers		
	Recognise and use factor pairs and commutativity in mental calculations	Establish whether a number up to 100 is prime \& recall prime numbers up to 19	
		Recognise and use square numbers and cube numbers and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$)	
Calculations			
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Multiply numbers up to 4 digits by a one twodigit number using a formal written method, including long multiplication for two-digit numbers	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal method of long multiplication
		Multiply and divide numbers mentally drawing upon known fact	
		Divide numbers up to four-digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
		Multiply and divide whole numbers and those involving decimals by 10,100 and 1000	Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context
			Perform mental calculations, including with mixed operations and large numbers
Solve Problems			
Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which ' n ' objects are connected to ' m ' objects	Solve problems, involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and correspondence problems in which ' n ' objects are connected to ' m ' objects	Solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	Solve problems involving addition, subtraction, multiplication and division
		Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	
Combined Operations			
		Solving problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	Use their knowledge of the order of operations to carry out calculations involving the four operations

Fractions			
Recognise and Write			
Count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10	Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	
Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators		Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number e.g. $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$	
Recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators			
Compare			
Recognise and show, using diagrams, equivalent fractions with small denominators	Recognise and show, using diagrams, families of common equivalent fractions		Use common factors to simply fractions; use common multiples to express fractions in the same denomination
Compare and order unit fractions and fractions with the same denominators		Compare and order fractions whose denominators are all multiples of the same number	Compare and order fractions, including fractions >1
Calculations			
Add and subtract fractions with the same denominator within one whole e.g. $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$	Add and subtract fractions with the same denominator	Add and subtract fractions with the same denominator and denominators that are multiples of the same number	Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
		Multiply proper fractions and mixed number by whole numbers, supported by materials and diagram	Multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. $\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}$
			Divide proper fractions by whole numbers e.g. $\frac{1}{3} \div 2=\frac{1}{6}$
Solve Problems			
Solve problems that involve all of the above	Solve problems involving increasingly harder fractions to calculate quantities and fractions to divide quantities, including non-unit fractions, where the answer is a whole number		

Ratio \& Proportion			
			Solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
			Solve problems involving the calculation of percentages and the use of percentages for comparison
			Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples
Algebra			
Solve problems, including missing number problems			Use simple formulae
			Generate and describe linear number sequences
			Express missing number problems algebraically
			Find pairs of numbers that satisfy an equation with two unknowns
			Enumerate possibilities of combinations of two variables
Measurement			
Using Measures			
Measure, compare, add and subtract lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) mass (kg/g) volume/capacity ($1 / \mathrm{ml}$)	Convert between different units of measure e.g. km to m , hours to minutes	Convert between different units of metric measure	Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
	Estimate, compare and calculate different measures	Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints	Use, read, write and convert standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit and vice versa, using decimal notation of up to three decimal places
		Use all four operations to solve problems involving measure, using decimal notation, including scaling	Convert between miles and kilometres
Money			
Add and subtract amounts of money to give change, using both $£$ and p in practical contexts	Estimate, compare and calculate different measures, including money in pounds and pence	Use all four operations to solve problems involving money.	

Time			
Tell and write the time from an analogue clock, including using Roman numerals I to XII and 12 hour and 24 hour clocks	Read, write and convert time between analogue and digital 12 and 24 hour clocks		Use read, write and convert between stand units, converting measures of time from a smaller unit of measure to a larger unit and vice versa
Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, noon and midnight	Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days	Solve problems involving converting between units of time	
Know the number of seconds in a minute and the number of days in each month, year and leap year			
Compare durations of events			
Perimeter, Area, Volume			
Measure the perimeter of simple 2-D shapes	Measure and calculate the perimeter of rectilinear figure in centimetres and metres	Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	Recognise that shapes with the same areas can have different perimeters and vice versa
	Find the area of rectilinear shapes by counting squares	Calculate the area of rectangles, including using standard units, square centimetres (cm^{2}) and square metres $\left(m^{2}\right)$ and estimate the area of irregular shapes	Calculate, estimate and compare volume of cubes and cuboids using standard units including square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(m^{2}\right)$ and extending to other units (e.g mm^{3} and km^{3})
		Estimate volume and capacity	Calculate the area of parallelograms and triangles
			Recognise when it is possible to use formulae for area and volume of shapes
Geometry			
2-D Shapes			
Draw 2-D shapes	Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and size	Distinguish between regular and irregular polygons based on reasoning about equal sides and angles	Draw 2-D shapes using given dimensions and angles
	Identify lines of symmetry in 2D shapes presented in different orientations	Use the properties of rectangles to deduce related facts and find missing lengths and angles	Compare and classify geometric shapes based on their properties and sizes
			Illustrate and name parts of circles, using radius, diameter, circumference and know that the diameter is twice the radius

3-D Shapes			
Make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		Identify 3-D shapes including cubes and other cuboids, from 2-D representations	Recognise, describe and build simple 3-D shapes, including making nets
Angles \& Lines			
Recognise angles as a property of shape or a description of a turn		Know angles are measured in degrees	Find unknown angles in any triangles, quadrilaterals and regular polygons
Identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn: identify whether angles are greater than or less than a right angle	Identify acute and obtuse angles and compare and order angles up to two right angles by size	Estimate and compare acute, obtuse and reflex angles	Recognise angles where they meet at a point, are on a straight line, or are vertically opposite and find missing angles
Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Identify lines of symmetry in 2-D shapes presented in different orientations	Draw given angles and measure them in degrees	
	Complete a simple symmetric figure with respect to a specific line of symmetry	Identify: > angles at a point and one whole turn > angles at a point on a straight line and a $\frac{1}{2}$ turn > other multiples of 90°	
Position \& Direction			
	Describe positions on a 2-D grid as coordinates in the first quadrant	Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	Describe positions on the full coordinate grid (all four quadrants)
	Plot specified points and draw sides to complete a given polygon		
	Describe movements between positions as translations of a given unit to the left/right and up/down		Draw and translate simple shapes on the coordinate plane and reflect them in the axes
Statistics			
Present and interpret			
Interpret and present data using bar charts, pictograms and tables	Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	Complete, read and interpret information in tables, including timetables	Interpret and construct pie charts and line graphs and use these to solve problems
Solve problems			
Solve one-step and two-step questions using information present in scaled bar charts and pictograms and tables	Solve comparison, sum and difference problems using information present in bar charts, pictograms, tables and other graphs	Solve comparison, sum and difference problems using information present in a line graph	Calculate and interpret the mean as an average

Appendix - Key Knowledge and Vocabulary

	outside, inside left, right around up, down in front, behind forwards, front, back backwards beside, next to sideways opposite across	movement slide, roll, turn stretch, bend full turn, whole turn, half turn, quarter turn, three-quarter turn
Measurement - Length and Height Step 1 - Compare lengths and heights, Step 2 - Measure length (1) Step 3 - Measure length (2)	centimetre, metre length, height, width, depth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller	longest, shortest, tallest, highest ... and so on far, near, close ruler metre stick height same
Measurement - Weight and Volume Step 1 - Introduce weight and mass Step 2 - Measure mass Step 3 - Compare mass Step 4 - Introduce capacity Step 5 - Measure capacity Step 6 - Compare capacity	Weight and Volume Vocab kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales	Capacity and Volume Vocab litre, millilitre capacity volume full, empty more than, less than half full, quarter full holds container
Measurement: Money Step 1 - Recognising coins Step 2 - Recognising notes Step 3 - Counting in coins	money coin penny, pence, pound price, cos \dagger buy, sell spend, spent pay value silver, bronze	change dear, costs more cheap, costs less, cheaper costs the same as how much ...? how many ...? Total amount
Measurement: Time Step 1 - Before and after Step 2 - Dates Step 3 - Time to the hour Step 4 - Time to the half hour Step 5 - Writing time Step 6 - Comparing time	time, date days of the week, Monday, Tuesday ... months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, month, year birthday, holiday morning, afternoon, morning, afternoon, evening, night, midnight bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last, finally	now, soon, early, late quick, quicker, quickest, quickly, faster, slower slow, slower, slowest, slowly old, older, oldest new, newer, newes \dagger takes longer, takes less time how long ago? how long will it be to ...? how long will it take to ...? how often? always, never, often, sometimes usually once, twice hour, o'clock, half past, clock, clock face, watch, hands hour hand, minute hand hours, minutes, seconds

Maths - KS1 - Year 2		
Key Vocabulary		
show how you ... describe the pattern investigate mental	mental calculation written calculation	explain your thinking
Key Knowledge	Key Vocabulary	
NUMBER - Place Value Step 1 - Count objects to 100 and read and write numbers in numerals/words Step 2 - Represent numbers to 100 Step 3 - Tens and ones with a part whole model Step 4 - Tens and ones using addition Step 5 - Use a place value chart Step 6 - Compare objects Step 7 - Compare numbers Step 8 - Order objects and numbers Step 9 - Count in $2 s, 5 s$ and $10 s$ Step 10 - Count in 3s	hundreds one-, two- or three-digit place, place value stands for, represents exchange twenty-first, twenty-second ... continue	two hundred ... one thousand threes, fours and so on tally predict rule
NUMBER - Addition and Subtraction Step 1 - Fact families - Addition and subtraction bonds to 20 Step 2 - Check calculations Step 3 -Compare number sentences Step 4 - Related facts Step 5 - Bonds to 100 (tens) Step 6 - Add and subtract 1 s Step 7-10 more and 10 less Step 8 - Add and subtract 10s Step 9 - Add a 2-digit and 1-digit number - crossing ten Step 10 - Subtract a 1-digit number from a 2-digit number - crossing ten Sep 11 - Add two 2-digit numbers - not crossing ten-add ones/add tens Step 12 - Add two 2-digit numbers - crossing ten - add ones/add tens Step 13 - Subtract a 2-digit no. from a 2-digit no. - not crossing ten Step 14 - Subtract a 2-digit number from a 2-digit number - crossing tensubtract ones \& tens Step 15 - Bonds to 100 (tens and ones) Step 16 - Add three 1-digit numbers	one hundred more one hundred less facts tens boundary exact, exactly	
Number: Fractions Step 1 - Make equal parts Step 2 - Recognise a half Step 3 - Find a half Step 4 - Recognise a quarter Step 5 - Find a quarter Step 6 - Recognise a third Step 7 - Find a third Step 8 - Unit fractions Step 9 - Non-unit fractions Step 10 - Equivalence of $\frac{1}{2}$ and $2 / 4$ Step 11 - Find three quarters Step 12 - Count in fractions	equivalent fraction mixed number numerator denominator two halves two quarters, three quarters one third, two thirds one of three equal parts	
Multiplication and Division Step 1 - Recognise equal groups Step 2 - Make equal groups Step 3 - Add equal groups Step 4 -Multiplication sentences using the \times symbol Step 5 - Multiplication sentences from pictures Step 6 - Use arrays Step 7-2 times-table Step 8 - 5 times-table Step 9-10 times-table Step 10 - Make equal groups-sharing Step 11- Make equal groups -grouping Step 12 - Divide by 2 Step 13 -Odd \& even numbers Step 14 - Divide by 5 Step 15 - Divide by 10	groups of times once, twice, three times ... ten times repeated addition divide, divided by, divided into share, share equally left, left over	one each, two each, three each ... ten each group in pairs, threes ... tens row, column multiplication table multiplication fact division fact

Measurement: Money Step 1 - Count money - pence Step 2 - Count money - pounds (notes and coins) Step 3 - Count money - notes and coins Step 4 - Select money Step 5 - Make the same amount Step 6 - Compare money Step 7 - Find the total Step 8 - Find the difference Step 9 - Find change Step 10 -Two-step problems	bought sold	
Measurement: Length and Height Step 1 - Measure length (cm) Step 2 - Measure length (m) Step 3 -Compare lengths Step 4-Order lengths Step 5 - Four operations with lengths	measuring scale further furthest tape measure	
Measurement: Time Step 1 - O'clock and half past Step 2 - Quarter past and quarter to Step 3 - Telling time to 5 minutes Step 4 - Minutes in an hour, hours in a day Step 5 - Find durations of time Step 6 - Compare durations of time	5, 10, 15 ... minutes past digital/analogue timer	
Measurement: Capacity, Mass and temperature Step 1 - Compare mass Step 2 - Measure mass in grams Step 3 - Measure mass in kilograms Step 4 - Compare volume Step 5 - Millilitres Step 6 - Litres Step 7 - Temperature	millilitre contains temperature degree	
Geometry: Properties of Shape Step 1 - Recognise 2D and 3D shapes Step 2 - Count sides on 2D shapes Step 3 -Count vertices on 2D shapes Step 4 - Draw 2D shapes Step 5 - Lines of symmetry Step 6 - Sort 2D shapes Step 7 - Make patterns with 2D shapes Step 8 -Count faces on 3D shapes Step 9 - Count edges on 3D shapes Step 10 - Count vertices on 3D shapes Step 11 - Sort 3D shapes Step 12 - Make patterns with 3D shapes	line symmetry rectangular circular triangular pentagon hexagon octagon	
Geometry : Position and Direction Step 1 Describing movement Step 2 Describing turns Step 3 Describing movement and turns Step 4 Making patterns with shapes	Route higher, lower clockwise, anticlockwise	right angle straight line
Statistics Step 1 - Make tally charts? Step 2 - Draw pictograms (1-1) Step 3 - Interpret pictograms (1-1) Step 4 - Draw pictograms (2,5 and 10) Step 5 - Interpret pictograms (2, 5 and 10) Step 6 - Block diagrams	tally, graph, block graph, pictogram represent label, title	mos \dagger popular, mos \dagger common least popular, least common

Maths - KS2	
Key Vocabulary	
greatest value, round, nearest, round least value round up round statement round down	he nearest ten, approximate, he nearest hundred approximately
Key Knowledge	Key Vocabulary
Year 3	
Number: Place Value Step 1 - Hundreds Step 2 - Represent numbers to 1,000 Step 3 - 100s, 10s and 1s (1) Step 4-100s, 10s and 1s (2) Step 5 - Number line to 1,000 Step 6 - Find 1, 10, 100 more or less than a given number Step 7 - Compare objects to 1,000 Step 8 -Compare numbers to 1,000 Step 9 - Order numbers Step 10 - Count in 50s	eights, fifties hundreds factor of relationship one hundred less one hundred more
Number: Addition and Subtraction Step 1 - Add and subtract multiples of 100 Step 2 - Add and subtract 3-digit numbers and ones - not crossing 10 Step 3 - Add 3-digit and 1-digit numbers - crossing 10 Step 4 - Subtract a 1-digit number from a 3-digit number - crossing 10 Step 5 - Add and subtract 3-digit numbers and tens - not crossing 100 Step 6 - Add a 3-digit number and tens - crossing 100 Step 7 - Subtract tens from a 3-digit number - crossing 100 Step 8 - Add and subtract 100s Step 9 - Spot the pattern - making it explicit Step 10 - Add and subtract a 2-digit and 3-digit number - not crossing 10 or 100 Step 11 - Add a 2-digit and 3-digit number - crossing 10 or 100 Step 12 - Subtract a 2-digit number from a 3-digit number - cross the 10 or 100 Step 13 - Add two 3-digit numbers - not crossing 10 or 100 Step 14 - Add two 3-digit numbers - crossing 10 or 100 Step 15 - Subtract a 3-digit number from a 3-digit number - no exchange Step 16 - Subtract a 3-digit number from a 3-digit number - exchange Step 17 - Estimate answers to calculations Step 18 - Check	hundreds boundary eights, fifties hundreds
Number : Multiplication and Division Step 1 - Multiplication - equal groups Step 2 - Multiplying by 3 Step 3 - Dividing by 3 Step 4 - The 3 times-table Step 5 - Multiplying by 4 Step 6 - Dividing by 4 Step 7 - The 4 times-table Step 8 - Multiplying by 8 Step 9 - Dividing by 8 Step 10 - The 8 times-tables	factor product remainder
NUMBER: Multiplication and Division Step 1 - Comparing statements Step 2 - Related calculations Step 3 - Multiply 2-digits by 1-digit (1) Step 4 - Multiply 2-digits by 1 -digit (2) Step 5 - Divide 2-digits by 1-digit (1) Step 6 - Divide 2-digits by 1-digit (2) Step 7 - Divide 2-digits by 1digit (3) Step 8 - Scaling Step 9 - How many ways?	
Number: Fractions Step 1 - Unit and non-unit fractions Step 2 - Making the whole Step 3 - Tenths	Sixths Sevenths Eighths Tenths

Step 4 - Count in tenths Step 5 - Tenths as decimals Step 6 - Fractions of a number line Step 7 - Fractions of a set of objects (1) Step 8 - Fractions of a set of objects (2) Step 9 - Fractions of a set of objects (3)	
Number: Fractions Step 1 - Equivalent fractions (1) Step 2 - Equivalent fractions (2) Step 3 - Equivalent fractions (3) Step 4 - Compare fractions Step 5 - Order fractions Step 6 - Add fractions Step 7 - Subtract fractions	
Measurement : Money Step 1 - Pounds and pence Step 2 - Converting pounds and pence Step 3 - Adding money Step 4 - Subtracting money Step 5 - Giving change	
Measurements: Length and Perimeter Step 1 - Measure length Step 2 - Equivalent lengths -m \& cm Step 3 - Equivalent lengths - mm \& cm Step 4 - Compare lengths Step 5 - Add lengths Step 6 - Subtract lengths Step 7 - Measure perimeter Step 8 - Calculate perimeter	perimeter millimetre kilometre mile distance apart ... between ... to ... from perimeter
Measurement: Time Step 1 -Months and years Step 2 - Hours in a day Step 3 - Telling the time to 5 minutes Step 4 - Telling the time to the minute Step 5 - Using AM and PM Step 6-24 hour clock Step 7 - Finding the duration Step 8 - Comparing the duration Step 9 - Start and end times Step10 - Measuring time in seconds	Roman numerals Earliest 12 -hour clock time, latest 24 -hour clock time a.m., Century p.m. calendar
Measurement: Mass and Capacity Step 1 - Measure mass (1) Step 2 - Measure mass (2) Step 3 - Compare mass Step 4 - Add and subtract mass Step 5 - Measure capacity (1) Step 6 -Measure capacity (2) Step 7 - Compare capacity Step 8 - Add and subtract capacity	Division approximately
Geometry: Properties of Shape Step 1 - Turns and angles Step 2 - Right angles in shapes Step 3 - Compare angles Step 4 - Draw accurately Step 5 - Horizontal and vertical Step 6 - Parallel and perpendicular Step 7 - Recognise and describe 2D shapes Step 8 - Recognise and describe 3D shapes Step 9 - Make 3D shapes	compass point octagonal north, south, east, quadrilateral west, N, S, E, W right-angled horizontal, vertical, parallel, diagonal perpendicular acute angle angle ... is a greater / obtuse angle smaller angle than pentagonal hemisphere hexagonal prism, triangular prism
Statistics Step 1 - Pictogram Step 2 - Bar Charts Step 3 - Tables	Char axis, axes bar chart diagram frequency table Venn diagram Carroll diagram

Maths - KS2		
Key Vocabulary		
justify next make a statement consecutive		
Key Knowledge	Key Vocabulary	
Year 4		
Number - Place Value Step 1 - Roman numerals to 100 Step 2 - Round to the nearest 10 Step 3 - Round to the nearest 100 Step 4 -Count in 1,000s Step 5-1,000s, 100s, 10s and 1s Step 6 - Partitioning Step 7 - Number line to 10,000 Step 8-1,000 more or less Step 9 - Compare numbers Step 10 - Order numbers Step 11 - Round to the nearest 1,000 Step 12 - Count in 25s Step 13 - Negative numbers	ten thousand hundred thousand million sixes, sevens, nines, twenty-fives one thousand more one thousand less	integer positive negative above/below zero minus negative numbers
Number - Addition and subtraction Step 1 - Add and subtract 1s, 10s, 100s and 1000s Step 2 - Add two 4-digit numbers - no exchange Step 3 - Add two 4-digit numbers - one exchange Step 4 - Add two 4-digit numbers - more than one exchange Step 5 - Subtract two 4-digit numbers - no exchange Step 6 - Subtract two 4-digit numbers - one exchange Step 7 - Subtract two 4-digit numbers - more than one exchange Step 8 - Efficient subtraction Step 9 - Estimate answers Step 10 - Checking strategies	inverse thousand	
Number - Multiplication and Division Step 1 - Multiply by 10 Step 2 - Multiply by 100 Step 3 - Divide by 10 Step 4 - Divide by 100 Step 5 - Multiply by 1 and 0 Step 6 - Divide by 1 Step 7 - Multiply and divide by 6 Step 8-6 times-table and division facts Step 9 - Multiply and divide by 9 Step 10-9 times-table and division facts Step 11 - Multiply and divide by 7 Step 12-7 times-table and division facts	inverse square squared cube cubed	
Number - Multiplication and Division Step 1-11 and 12 times-table Step 2 - Multiply 3 numbers Step 3 - Factor pairs Step 4 -Efficient multiplication Step 5 - Written methods Step 6 - Multiply 2-digits by 1-digit Step 7 - Multiply 3-digits by 1 -digit Step 8 - Divide 2-digits by 1-digit (1) Step 9 - Divide 2-digits by 1-digit (2) Step 10 - Divide 3 digits by 1 digit Step 11 - Correspondence problems		
Number - Fractions Step 1 - What is a fraction? Step 2 - Equivalent fractions (1) Step 3 - Equivalent fractions (2) Step 4 - Fractions greater than 1 Step 5 - Count in fractions Step 6 - Add 2 or more fractions Step 7 - Subtract 2 fractions Step 8 - Subtract from whole amounts Step 9 - Calculate fractions of a quantity	hundredths decimal decimal fraction decimal point	decimal place decimal equivalent proportion

Number - Decimals Step 1 - Recognise tenths and hundredths Step 2 - Tenths as decimals Step 3 - Tenths on a place value grid Step 4 - Tenths on a number line Step 5 - Divide 1 digit by 10 Step 6 - Divide 2 digits by 10 Step 7 - Hundredths Step 8 - Hundredths as decimals Step 9 - Hundredths on a place value grid Step 10 - Divide 1 or 2 digits by 100		
Number - Decimals Step 1 - Make a whole, Step 2 - Write decimals Step 3 - Compare decimals Step 4 - Order decimals Step 5 - Round decimals Step 6 - Halves and quarters		
Measurement Length and Perimeter Step 1 - Kilometres Step 2 - Perimeter on a grid Step 3 -Perimeter of a rectangle Step 4 -Perimeter of rectilinear shapes	unit standard unit metric unit breadth	edge area covers square centimetre (cm2)
Measurement - Area Step 1 -What is area? Step 2 - Counting squares Step 3 - Making shapes Step 4 - Comparing area		
Measurement - Money Step 1 - Pounds and pence Step 2 - Ordering amounts of money Step 3 - Using rounding to estimate money Step 4 - Four operations		
Measurement - Time Step 1 - Hours, minutes and seconds Step 2 - Years, months, weeks and days Step 3 - Analogue to digital - 12 hour Step 4 - Analogue to digital - 24 hour	leap year millennium noon date of birth	timetable arrive depart
Geometry - Properties of Shape Step 1 - Identify angles Step 2 - Compare and order angles Step 3 - Triangles Step 4-Quadrilaterals Step 5 -Lines of symmetry Step 6 - Complete a symmetrical figure	line construct \dagger sketch centre angle, right-angled base, square-based reflect, reflection regular, irregular 3-D, threedimensional spherical cylindrical tetrahedron	2-D, two-dimensional oblong rectilinear equilateral triangle isosceles triangle scalene triangle heptagon parallelogram rhombus trapezium polygon polyhedron
Geometry Position and Direction Step 1 - Describe position Step 2 - Draw on a grid Step 3 - Move on a grid Step 4 -Describe a movement on a grid	north-east, northwest, south-east, south-west, NE, NW, SE, SW translate, translation	rotate, rotation degree reflection ruler, set square angle measurer, compass
Statistics Step 1 - Interpret charts Step 2 - Comparison, sum and difference Step 3 - Introducing line graphs Step 4 - Line graphs	survey questionnaire data	

Maths - KS2 - Year 5		
Key Vocabulary		
explain your reasoning \geq greater than or equal to ascend factor pair \leq less than or equal to formula divisibility	descending order	square number prime number
Key Knowledge	Key Vocabu	
Number: Place Value Step 1 - Number to 10,000 Step 2 - Roman numerals to 1,000 Step 3 - Round to the nearest 10,100 and 1,000 Step 4 - Number to 100,000 Step 5 - Compare and order numbers to 100,000 Step 6 - Round numbers within 100,00 Step 7 - Numbers to a million Step 8 - Counting in 10s, 100s, 1,000 s, 10,000 s and 100,000 s Step 9 - Compare and order numbers to a million Step 10 - Round numbers to a million Step 11 - Negative		
Number: Addition and Subtraction Step 1 - Add whole numbers with more than 4-digits (column method) Step 2 - Subtract whole numbers with more than 4-digits (column method) Step 3 - Round to estimate and approximate Step 4 - Inverse operations (addition and subtraction) Step 5 - Multi-step addition and subtraction problems	ones boundary, tenths boundary ten thousand	
Number: Multiplication and Division Step 1 - Multiples, Step 2 - Factors Step 3 - Common factors Step 4 - Prime numbers Step 5 - Square numbers Step 6 - Multiply by 10, 100, 1000 Step 7 - Divide by 10,1001000 Inverse operations (Multiplication and Division) Step 8 - Multiply and divide by multiples of 10,100 and 1,000		
Number: Multiplication and Division Step 1 - Multiply 4-digits by 1-digit Step 2 - Multiply 2-digits (area model) Step 3 - Multiply 2-digits by 2-digits Step 4 - Multiply 3-digits by 2-digits Step 5 - Multiply 4-digits by 2-digits Step 6 - Divide 4-digits by 1-digit Step 7 - Divide with remainders		
Number: Decimals and Percentages Step 1 - Decimals up to 2 d.p. Step 2 - Decimals as fractions (1) Step 3 - Decimals as fractions (2) Step 4 - Understand thousandths Step 5 - Thousands as decimals Step 6 - Rounding decimals Step 7 - Order and compare decimals Step 8 - Understand percentages Step 9 - Percentages as fractions and decimals Step 10 - Equivalent	in every for every percentage per cent, \%	
Number: Decimals Step 1 - Adding decimals within 1 Step 2 - Subtracting decimals within 1 Step 3 - Complements to 1 Step 4 - Adding decimals - crossing the whole Step 5 - Adding decimals with the same number of decimal places Step 6 - Subtracting decimals with the same number of decimal places Step 7 - Adding decimals with a different number of decimal places Step 8 - Subtracting decimals with a different no. of decimal places Step 9 - Adding and subtracting wholes and decimals Step 10 - Decimal sequences		

Step 11 - Multiplying decimals by 10,100 and 1,000 Step 12 - Dividing decimals by 10,100 and 1,000	
Number: Fractions Step 1 - Equivalent fractions Step 2 - Improper fractions to mixed numbers Step 3 - Mixed numbers to improper fractions Step 4 - Number sequences Step 5 - Compare and order fractions less than 1 Step 6 - Compare and order fractions greater than 1 Step 7 - Add and subtract fractions Step 8 - Add fractions within 1 Step 9 - Add 3 or more fractions Step 10 - Add fractions Step 11 - Add mixed numbers Subtract fractions Step 12 - Subtract mixed numbers Step 13 - Subtract - breaking the whole Step 14 - Subtract 2 mixed numbers Step 15 - Multiply unit fractions by an integer Step 16 - Multiply non-unit fractions by an integer Step 16 - Multiply mixed numbers by integers Step 17 - Fraction of an amount Step 18 - Using fractions as operators	proper/improper fraction thousandths equivalent reduced to cancel
Measurement: Converting Units Step 1 - Kilograms and kilometres Step 2 - Milligrams and millilitres Step 3 - Metric units Step 4 -Imperial units Step 5 - Converting units of time Step 6 - Timetables	imperial unit discount currency
Measurement: Volume Step 1 - What is volume? Step 2 - Compare volume Step 3 - Estimate volume Step 4 - Estimate capacity	pint gallon
Geometry: Perimeter and Area Step 1 - Measure perimeter Step 2 -Calculate perimeter Step 3 - Find unknown lengths Step 4 - Area of rectangles Step 5 - Area of compound shapes Step 6 - Area of irregular shapes Step 7 - Estimate	radius square metre $(\mathrm{m} 2)$ diameter square millimetre $(\mathrm{mm} 2)$ congruent x-axis axis of symmetry y-axis, reflective symmetry quadrant
Geometry: Properties of Shape Step 1 - Can I measure angles in degrees? Step 2 - Can I measure with a protractor? (1) Step 3 - Can I measure with a protractor? (2) Step 4 - Can I draw lines and angles accurately? Step 5 -Calculating angles on a straight line? Step 6 - Can I calculating angles around a point? Step 7 - Can I calculate lengths and angles in shapes? Step 8 - Can I distinguish between regular and irregular polygons? Step 9 - Can I reason about 3-D shapes?	Radius x-axis, diameter y-axis congruent quadrant axis of symmetry octahedron reflective symmetry protractor
Geometry: Position and Direction Step 1 - Position in the first quadrant Step 2 -Reflection Step 3 - Reflection with coordinates Step 4 - Translation Step 5 - Translation with coordinates	coordinate
Statistics Step 1 - Read and interpret line graphs Step 2 - Draw line graphs Step 3 - Use line graphs to solve problems Step 4 - Read and interpret tables Step 5 - Two way tables Step 6 - Timetables	database bar line chart line graph maximum/minimum value outcome

Maths - KS2	
Key Vocabulary	
Key Knowledge	Key Vocabulary
Year 6	
Number: Place Value Step 1 - Numbers to ten million Step 2 - Compare and order any number Step 3 - Round any numbers Step 4 - Negative numbers	
Number: Four operations Step 1 - Add and subtract whole numbers Step 2 - Multiply up to a 4-digit by 1-digit number Step 3 - Short division Step 4 - Division using factors Step 5 - Long division (1) Step 6 - Long division (2) Step 7 - Long division (3) Step 8 - Long division (4) Step 9 - Common factors Step 10 - Common multiples Step 11 - Primes Step 12 - Squares and cubes Step 13 - Order of operations Step 14 - Mental calculations and estimation Step 15 - Reasoning from known facts	factorise prime factor digit total
Number: Fractions Step 1 - Simplify fractions Step 2 - Fractions on a number line Step 3 -Compare and order fractions by the denominator Step 4 Compare and order fractions by the numerator Step 5 - Add and subtract fractions (1) Step 6 - Add and subtract fractions (2) Step 7 - Adding fractions Step 8 - Subtracting fractions Step 9 - Mixed addition and subtraction problems Step 10 - Multiply fractions by whole number Step 11 - Multiply fractions by fraction Step 12 - Divide a fraction by a whole number (1) Step 13 - Divide a fraction by a whole number (2) Step 14 - Four rules with fractions Step 15 - Fraction of an amount Step 16 - Fraction of an amount - finding the whole	
Number: Decimals Step 1 - Three decimal places Step 2 - Multiply by 10, 100 and 1,000 Step 3 - Divide by 10, 100 and 1,000 Step 4 - Multiply decimals by integers Step 5 - Divide decimals by integers Step 6 - Division to solve problems Step 7 - Decimals as fractions Step - 8 Fractions to decimals (1) Step 9 - Fractions to decimals (2)	
Number: Ratio Step 1 - Using ratio language Step 2 - Ratio and fractions Step 3 - Introducing the ratio symbol Step 4 - Calculating ratio Step 5 - Using scale factors Step 6 - Calculating scale factors Step 7 - Ratio and proportion problems	ratio
Number: Algebra Step 1 - Find a rule - one step Step 2 - Find a rule - two step Step 3 Forming expression	formulae equation unknown

Step 4 - Substitution Step 5 - Formulae Step 6 - Forming equations Step 7 - Solve simple one step equations Step 8 - Solve two step equations Step 9 - Find pairs of values Step 10 - Enumerate possibilities	variable
Measurement: Converting Units Step 1 - Metric measures Step 2 - Convert metric measures Step 3 -Calculate with metric measures Step 4 - Miles and kilometres Step 5 - Imperial measures	yard, foot, feet inch, inches cubic Greenwich Mean Time, British Summer Time, centimetres(cm3), International Date Line cubic metres (m3), cubic millimetres (mm3), cubic kilometres (km3)
Measurement: Perimeter, Area, Volume Step 1 - Shapes - same area Step 2 - Area and perimeter Step 3 - Area of a triangle (1) Step 4 - Area of a triangle (2) Step 5 - Area of a triangle (3) Step 6 - Area of a parallelogram Step 7 - Volume - counting cubes Step 8 - Volume of a cuboid	
Geometry Step 1 - Coordinates in the first quadrant Step 2 -Coordinates in four quadrants Step 3 - Translations Step 4 - Reflections	circumference intersecting concentric intersection arc plane net open/closed
Geometry: Properties of Shape Step 1 - Measure with a protractor Step 2 - Introduce angles Step 3 - Calculate angles Step 4 - Vertically opposite angles Step 5 - Angles in a triangle Step 6 - Angles in a triangle - special cases Step 7-Angles in a triangle - missing angles Step 8 - Angles in special quadrilaterals Step 9 - Angles in regular polygons Step 10 - Draw shapes accurately Step 11 - Nets of 3D shapes	kite dodecahedron net, open, closed
Statistics Step 1 - Read and interpret line graphs Step 2 - Draw line graphs Step 3 - Use line graphs to solve problems Step 4 - Circles Step 5 - Read and interpret pie charts Step 6 - Pie charts with percentages Step 7 - Draw pie charts Step 8 - The mean	pie chart mean (mode, median, range as estimates for this) Statistics distribution

Ready-to-progress criteria and the curriculum
The ready-to-progress criteria in this document are organised into 6 strands, each of which has its own code for ease of identification. These are listed below.
Measurement and Statistics are integrated as applications of number criteria, and elements of measurement that relate to shape are included in the Geometry strand.

Ready-to-progress criteria strands	Code
Number and place value	NPV
Number facts	NF
Addition and subtraction	AS
Multiplication and division	MD
Fractions	F
Geometry	G

Year 1 guidance

Ready-to-progress criteria

Previous experience	Year 1 ready-to-progress criteria	Future applications
Begin to develop a sense of the number system by verbally counting forward to and beyond 20, pausing at each multiple of 10 .	1NPV-1 Count within 100, forwards and backwards, starting with any number.	Count through the number system. Place value within 100. Compare and order numbers. Add and subtract within 100.
Play games that involve moving along a numbered track, and understand that larger numbers are further along the track.	1NPV-2 Reason about the location of numbers to 20 within the linear number system, including comparing using < > and =	Reason about the location of larger numbers within the linear number system. Compare and order numbers. Read scales.
Begin to experience partitioning and combining numbers within 10.	1NF-1 Develop fluency in addition and subtraction facts within 10.	Add and subtract across 10. All future additive calculation. Add within a column during columnar addition when the column sums to less than 10 (no regrouping). Subtract within a column during columnar subtraction when the minuend of the column is larger than the subtrahend (no exchanging).
Distribute items fairly, for example, put 3 marbles in each bag. Recognise when items are distributed unfairly.	1NF-2 Count forwards and backwards in multiples of 2, 5 and 10, up to 10 multiples, beginning with any multiple, and count forwards and backwards through the odd numbers.	Recall the 2, 5 and 10 multiplication tables. Carry out repeated addition and multiplication of 2,5 , and 10, and divide by 2, 5 and 10. Identify multiples of 2,5 and 10. Unitise in tens. Identify odd and even numbers.

Previous experience	Year 1 ready-to-progress criteria	Future applications
Understand the cardinal value of number words, for example understanding that 'four' relates to 4 objects. Subitise for up to to 5 items. Automatically show a given number using fingers.	1AS-1 Compose numbers to 10 from 2 parts, and partition numbers to 10 into parts, including recognising odd and even numbers.	Add and subtract within 10.
Devise and record number stories, using pictures, numbers and symbols (such as arrows).	1AS-2 Read, write and interpret equations containing addition (+), subtraction (\perp and equals (\ddagger symbols, and relate additive expressions and equations to real-life contexts.	Represent composition and decomposition of numbers using equations.
See, explore and discuss models of common 2D and 3D shapes with varied dimensions and presented in different orientations (for example, triangles not always presented on their base).	1G-1 Recognise common 2D and 3D shapes presented in different orientations, and know that rectangles, triangles, cuboids and pyramids are not always similar to one another.	Describe properties of shape. Categorise shapes. Identify similar shapes.
Select, rotate and manipulate shapes for a particular purpose, for example: - rotating a cylinder so it can be used to build a tower - rotating a puzzle piece to fit in its place	1G-2 Compose 2D and 3D shapes from smaller shapes to match an example, including manipulating shapes to place them in particular orientations.	Find the area or volume of a compound shape by decomposing into constituent shapes. Rotate, translate and reflect 2D shapes. Identify congruent shapes.

Year 2 guidance

Ready-to-progress criteria

Year 1 conceptual prerequesites	Year 2 ready-toprogress criteria	Future applications
Know that 10 ones are equivalent to 1 ten. Know that multiples of 10 are made up from a number of tens, for example, 50 is 5 tens.	2NPV-1 Recognise the place value of each digit in two-digit numbers, and compose and decompose twodigit numbers using standard and nonstandard partitioning.	Compare and order numbers. Add and subtract using mental and formal written methods.
Place the numbers 1 to 9 on a marked, but unlabelled, 0 to 10 number line. Estimate the position of the numbers 1 to 9 on an unmarked 0 to 10 number line. Count forwards and backwards to and from 100.	2NPV-2 Reason about the location of any twodigit number in the linear number system, including identifying the previous and next multiple of 10 .	Compare and order numbers. Round whole numbers. Subtract ones from a multiple of 10 , for example: $30-3=27$
Develop fluency in addition and subtraction facts within 10.	2NF-1 Secure fluency in addition and subtraction facts within 10, through continued practice.	All future additive calculation. Add within a column during columnar addition when the column sums to less than 10 (no regrouping). Subtract within a column during columnar subtraction when the minuend of the column is larger than the subtrahend (no exchanging).

Year 1 conceptual prerequesites	Year 2 ready-toprogress criteria	Future applications
Learn and use number bonds to 10 , for example: $8+?=10$ Partition numbers within 10, for example: $5=2+3$	2AS-1 Add and subtract across 10, for example: $\begin{aligned} & 8+5=13 \\ & 13-5=8 \end{aligned}$	Add and subtract within 100: add and subtract any 2 twodigit numbers, where the ones sum to 10 or more, for example: $26+37=63$ Use knowledge of unitising to add and subtract across other boundaries, for example: $1.3-0.5=0.8$ Add within a column during columnar addition when the column sums to more than 10 (regrouping), for example, for: $126+148$ Subtract within a column during columnar subtraction when the minuend of the column is smaller than the subtrahend (exchanging), for example, for: $453-124$
Solve missing addend problems within 10, for example: $4+\square=10$	2AS-2 Recognise the subtraction structure of 'difference' and answer questions of the form, "How many more...?".	Solve contextual subtraction problems for all three subtraction structures (reduction, partitioning and difference) and combining with other operations.
Add and subtract within 10, for example: $\begin{aligned} & 6+3=9 \\ & 6-2=4 \end{aligned}$ Know that a multiple of 10 is made up from a number of tens, for example, 50 is 5 tens.	2AS-3 Add and subtract within 100 by applying related onedigit addition and subtraction facts: add and subtract only ones or only tens to/from a two-digit number.	Add and subtract using mental and formal written methods.

Year 1 conceptual prerequesites	Year 2 ready-toprogress criteria	Future applications
Add and subtract within 10. Know that a multiple of 10 is made up from a number of tens, for example, 50 is 5 tens.	2AS-4 Add and subtract within 100 by applying related onedigit addition and subtraction facts: add and subtract any 2 twodigit numbers.	Add and subtract numbers greater than 100, recognising unitising, for example: 32 ones +23 ones $=55$ ones so 32 tens +23 tens $=55$ tens $320+230=550$
Count in multiples of 2, 5 and 10.	2MD-1 Recognise repeated addition contexts, representing them with multiplication equations and calculating the product, within the 2,5 and 10 multiplication tables.	Use multiplication to represent repeated addition contexts for other group sizes. Memorise multiplication tables.
Count in multiples of 2, 5 and 10 to find how many groups of 2,5 or 10 there are in a particular quantity, set in everyday contexts.	2MD-2 Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).	Division with other divisors.
Recognise common 2D and 3D shapes presented in different orientations.	2G-1 Use precise language to describe the properties of 2D and 3D shapes, and compare shapes by reasoning about similarities and differences in properties.	Identify similar shapes. Describe and compare angles. Draw polygons by joining marked points Identify parallel and perpendicular sides. Identify regular polygons Find the perimeter of regular and irregular polygons. Compare areas and calculate the area of rectangles (including squares) using standard units. Compare areas and calculate the area of rectangles (including squares) using standard units.

Year 3 guidance

Ready-to-progress criteria

Year 2 conceptual prerequisite	Year 3 ready-to-progress criteria	Future applications
Know that 10 ones are equivalent to 1 ten, and that 40 (for example) can be composed from 40 ones or 4 tens. Know how many tens there are in multiples of 10 up to 100.	3NPV-1 Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10; apply this to identify and work out how many 10s there are in other three-digit multiples of 10.	Solve multiplication problems that that involve a scaling structure, such as 'ten times as long'.
Recognise the place value of each digit in two-digit numbers, and compose and decompose two-digit numbers using standard and non-standard partitioning.	3NPV-2 Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning.	Compare and order numbers. Add and subtract using mental and formal written methods.
Reason about the location of any two-digit number in the linear number system, including identifying the previous and next multiple of 10.	3NPV-3 Reason about the location of any three-digit number in the linear number system, including identifying the previous and next multiple of 100 and 10.	Compare and order numbers. Estimate and approximate to the nearest multiple of $1,000,100$ or 10.
Count in multiples of 2, 5 and 10.	3NPV-4 Divide 100 into 2, 4,5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with 2, 4, 5 and 10 equal parts.	Read scales on graphs and measuring instruments.

Year 2 conceptual prerequisite	Year 3 ready-to-progress criteria	Future applications
Add and subtract across 10, for example: $8+5=13$ $13-5=8$	3NF-1 Secure fluency in addition and subtraction facts that bridge 10, through continued practice.	Add and subtract mentally where digits sum to more than 10, for example: $26+37=63$

Year 2 conceptual prerequisite	Year 3 ready-to-progress criteria	Future applications
Automatically recall number bonds to 9 and to 10. Know that 10 ones are equivalent to 1 ten, and 10 tens are equivalent to 1 hundred.	3AS-1 Calculate complements to 100 , for example: $46+?=100$	Calculate complements to other numbers, particularly powers of 10 . Calculate how much change is due when paying for an item.
Automatically recall addition and subtraction facts within 10 and across 10. Recognise the place value of each digit in two- and three-digit numbers. Know that 10 ones are equivalent to 1 ten, and 10 tens are equivalent to 1 hundred.	3AS-2 Add and subtract up to three-digit numbers using columnar methods.	Add and subtract other numbers, including fourdigits and above, and decimals, using columnar methods.
Have experience with the commutative property of addition, for example, have recognised that $3+2$ and $2+3$ have the same sum. Be able to write an equation in different ways, for example, $2+3=5 \text { and } 5=2+3$ Write equations to represent addition and subtraction contexts.	3AS-3 Manipulate the additive relationship: Understand the inverse relationship between addition and subtraction, and how both relate to the part-part-whole structure. Understand and use the commutative property of addition, and understand the related property for subtraction.	All future additive reasoning.
Recognise repeated addition contexts and represent them with multiplication equations. Relate grouping problems where the number of groups is unknown to multiplication equations with a missing factor, and to division equations (quotitive division).	3MD-1 Apply known multiplication and division facts to solve contextual problems with different structures, including quotitive and partitive division.	

Year 2 conceptual prerequisite	Year 3 ready-to-progress criteria	Future applications
	3F-1 Interpret and write proper fractions to represent 1 or several parts of a whole that is divided into equal parts.	Use unit fractions as the basis to understand nonunit fractions, improper fractions and mixed numbers, for example: $\frac{2}{5}$ is 2 one-fifths $\frac{6}{5}$ is 6 one-fifths, so $\frac{6}{5}=1 \frac{1}{5}$
	3F-2 Find unit fractions of quantities using known division facts (multiplication tables fluency).	Apply knowledge of unit fractions to non-unit fractions.
Reason about the location of whole numbers in the linear number system.	3F-3 Reason about the location of any fraction within 1 in the linear number system.	Compare and order fractions.
Automatically recall addition and subtraction facts within 10. Unitise in tens: understand that 10 can be thought of as a single unit of 1 ten, and that these units can be added and subtracted.	3F-4 Add and subtract fractions with the same denominator, within 1.	Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers.
Recognise standard and non-standard examples of 2D shapes presented in different orientations. Identify similar shapes.	3G-1 Recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations.	Compare angles. Estimate and measure angles in degrees.
Compose 2D shapes from smaller shapes to match an exemplar, rotating and turning over shapes to place them in specific orientations.	3G-2 Draw polygons by joining marked points, and identify parallel and perpendicular sides.	Find the area or volume of a compound shape by decomposing into constituent shapes. Find the perimeter of regular and irregular polygons.

Year 4 guidance

Ready-to-progress criteria

Year 3 conceptual prerequesite	Year 4 ready-to-progress criteria	Future applications
Know that 10 tens are equivalent to 1 hundred, and that 100 is 10 times the size of 10 .	4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 .	Solve multiplication problems that that involve a scaling structure, such as '10 times as long'.
Recognise the place value of each digit in three-digit numbers, and compose and decompose three-digit numbers using standard and non-standard partitioning.	4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning.	Compare and order numbers. Add and subtract using mental and formal written methods.
Reason about the location of any threedigit number in the linear number system, including identifying the previous and next multiple of 10 and 100.	4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 , and rounding to the nearest of each.	Compare and order numbers. Estimate and approximate to the nearest multiple of $1,000,100$ or 10.
Divide 100 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 100 with 2 , 4,5 and 10 equal parts.	4NPV-4 Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts.	Read scales on graphs and measuring instruments.
Recall multiplication and division facts in the 5 and 10, and 2, 4 and 8 multiplication tables, and recognise products in these multiplication tables as multiples of the corresponding number.	4NF-1 Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number.	Use multiplication facts during application of formal written methods. Use division facts during application of formal written methods.

Year 3 conceptual prerequesite	Year 4 ready-to-progress criteria	Future applications
Use known division facts to solve division problems. Calculate small differences, for example: $74-72=2$	4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders, for example: $74 \div 9=8 \text { r } 2$ and interpret remainders appropriately according to the context.	Correctly represent and interpret remainders when using short and long division.
Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10), for example: $\begin{aligned} & 80+60=140 \\ & 140-60=80 \\ & 30 \times 4=120 \\ & 120 \div 4=30 \end{aligned}$	4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100), for example: $\begin{aligned} & 8+6=14 \text { and } 14-6=8 \\ & \text { so } \\ & 800+600=1,400 \\ & 1,400-600=800 \\ & \\ & 3 \times 4=12 \text { and } 12 \div 4=3 \\ & \text { so } \\ & 300 \times 4=1,200 \\ & 1,200 \div 4=300 \end{aligned}$	Apply place-value knowledge to known additive and multiplicative number facts, extending to a whole number of larger powers of ten and powers of ten smaller than one, for example: $\begin{aligned} & 800,000+600,000=1,400,000 \\ & 1,400,000-600,000=800,000 \end{aligned}$ $\begin{aligned} & 0.03 \times 4=0.12 \\ & 0.12 \div 4=0.03 \end{aligned}$
Multiply two-digit numbers by 10 , and divide three-digit multiples of 10 by 10 .	4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size.	Convert between different metric units of measure. Apply multiplication and division by 10 and 100 to calculations involving decimals, for example: $\begin{aligned} & 0.03 \times 100=3 \\ & 3 \div 100=0.03 \end{aligned}$
Understand the inverse relationship between multiplication and division. Write and use multiplication table facts with the factors presented in either order.	4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication.	Recognise and apply the structures of multiplication and division to a variety of contexts.
	4MD-3 Understand and apply the distributive property of multiplication.	Recognise when to use and apply the distributive property of multiplication in a variety of contexts.

Year 3 conceptual prerequesite	Year 4 ready-to-progress criteria	Future applications
Reason about the location of fractions less than 1 in the linear number system.	4F-1 Reason about the location of mixed numbers in the linear number system.	Compare and order fractions.
Identify unit and nonunit fractions.	4F-2 Convert mixed numbers to improper fractions and vice versa.	Compare and order fractions. Add and subtract fractions where calculation bridges whole numbers.
Add and subtract fractions with the same denominator, within 1 whole, for example: $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$	4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers, for example: $\begin{aligned} & \frac{7}{5}+\frac{4}{5}=\frac{11}{5} \\ & 3 \frac{7}{8}-\frac{2}{8}=3 \frac{5}{8} \\ & 7 \frac{2}{5}+\frac{4}{5}=8 \frac{1}{5} \\ & 8 \frac{1}{5}-\frac{4}{5}=7 \frac{2}{5} \end{aligned}$	
Draw polygons by joining marked points.	4G-1 Draw polygons, specified by coordinates in the first quadrant, and translate within the first quadrant.	Draw polygons, specified by coordinates in the 4 quadrants.
Measure lines in centimetres and metres. Add more than 2 addends. Recall multiplication table facts.	4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.	Draw, compose and decompose shapes according to given properties, dimensions, angles or area.
	4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry.	Draw polygons, specified by coordinates in the 4 quadrants: draw shapes following translation or reflection in the axes.

Year 5 guidance

Ready-to-progress criteria

Year 4 conceptual prerequesite	Year 5 ready-to-progress criteria	Future applications
Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100.	5NPV-1 Know that 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times the size of 0.01 . Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01 .	Solve multiplication problems that have the scaling structure, such as 'ten times as long'. Understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal fraction.
Recognise the place value of each digit in four-digit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning.	5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose numbers with up to 2 decimal places using standard and nonstandard partitioning.	Compare and order numbers, including those with up to 2 decimal places. Add and subtract using mental and formal written methods.
Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100, and rounding to the nearest of each.	5NPV-3 Reason about the location of any number with up to 2 decimals places in the linear number system, including identifying the previous and next multiple of 1 and 0.1 and rounding to the nearest of each.	Compare and order numbers, including those with up to 2 decimal places. Estimate and approximate to the nearest 1 or 0.1 .
Divide 1,000 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with 2,4 , 5 and 10 equal parts.	5NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/number lines marked in units of 1 with 2 , 4,5 and 10 equal parts.	Read scales on graphs and measuring instruments.

Year 4 conceptual prerequesite	Year 5 ready-to-progress criteria	Future applications
Divide 100 and 1,000 into 2, 4,5 and 10 equal parts. Find unit fractions of quantities using known division facts (multiplication tables fluency).	5NPV-5 Convert between units of measure, including using common decimals and fractions.	Read scales on measuring instruments, and on graphs related to measures contexts. Solve measures problems involving different units by converting to a common unit.
Recall multiplication and division facts up to 12×12. Solve division problems, with two-digit dividends and onedigit divisors, that involve remainders, for example: $74 \div 9=8 r 2$	5NF-1 Secure fluency in multiplication table facts, and corresponding division facts, through continued practice.	Use multiplication facts during application of formal written layout. Use division facts during short division and long division.
Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10 or 100), for example: $\begin{aligned} & 8+6=14 \\ & 80+60=140 \\ & 800+600=1,400 \end{aligned}$ $\begin{aligned} & 3 \times 4=12 \\ & 30 \times 4=120 \\ & 300 \times 4=1,200 \end{aligned}$	5NF-2 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 1 tenth or 1 hundredth), for example: $\begin{aligned} & 8+6=14 \\ & 0.8+0.6=1.4 \\ & 0.08+0.06=0.14 \\ & \\ & 3 \times 4=12 \\ & 0.3 \times 4=1.2 \\ & 0.03 \times 4=0.12 \end{aligned}$	Recognise number relationships within the context of place value to develop fluency and efficiency in calculation.
Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to scaling a number by 10 or 100 .	5MD-1 Multiply and divide numbers by 10 and 100; understand this as equivalent to making a number 10 or 100 times the size, or 1 tenth or 1 hundredth times the size.	Convert between different metric units of measure.

Year 4 conceptual prerequesite	Year 5 ready-to-progress criteria	Future applications
Recall multiplication and division facts up to 12×12, and recognise products in multiplication tables as multiples of the corresponding number. Recognise multiples of 10, 100 and 1,000. Apply place-value knowledge to known additive and multiplicative number facts. Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients).	5MD-2 Find factors and multiples of positive whole numbers, including common factors and common multiples, and express a given number as a product of 2 or 3 factors.	Solve contextual division problems. Simplify fractions. Express fractions in the same denomination.
Recall multiplication facts up to 12×12. Manipulate multiplication and division equations.	5MD-3 Multiply any whole number with up to 4 digits by any one-digit number using a formal written method.	Solve contextual and noncontextual multiplication problems using a formal written method.
Recall multiplication and division facts up to 12×12. Manipulate multiplication and division equations. Solve division problems, with two-digit dividends and onedigit divisors, that involve remainders, for example: $74 \div 9=8 r 2$ and interpret remainders appropriately according to the context.	5MD-4 Divide a number with up to 4 digits by a one-digit number using a formal written method, and interpret remainders appropriately for the context.	Solve contextual and noncontextual division problems using a formal written method.
Recall multiplication and division facts up to 12×12. Find unit fractions of quantities using known division facts (multiplicationtables fluency). Unitise using unit fractions (for example, understand that there are 3 one-fifths in threefifths).	5F-1 Find non-unit fractions of quantities.	Solve multiplication problems that have the scaling structure.

Year 4 conceptual prerequesite	Year 5 ready-to-progress criteria	Future applications
Recall multiplication and division facts up to 12×12. Reason about the location of fractions in the linear number system.	5F-2 Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	Compare and order fractions. Use common factors to simplify fractions. Use common multiples to express fractions in the same denomination. Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
Divide powers of 10 into 2, 4, 5 and 10 equal parts.	5F-3 Recall decimal fraction equivalents for $\frac{1}{2}$, $\frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$, and for multiples of these proper fractions.	Read scales on graphs and measuring instruments. Know percentage equivalents of common fractions.
Recognise right angles as a property of shape or a description of a turn, and identify right angles in 2D shapes presented in different orientations. Identify whether the interior angles of a polygon are equal or not.	5G-1 Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size.	Solve problems involving missing angles.
Compose polygons from smaller shapes. Recall multiplication facts up to 12×12.	5G-2 Compare areas and calculate the area of rectangles (including squares) using standard units.	Calculate the area of compound rectilinear shapes and other 2D shapes, including triangles and parallelograms, using standard units. Use the relationship between side-length and perimeter, and between side-length and area to calculate unknown values.

Year 6 guidance

Ready-to-progress criteria

Year 5 conceptual prerequesite	Year 6 ready-toprogress criteria	Key stage 3 applications
Understand the relationship between powers of 10 from 1 hundredth to 1,000 in terms of grouping and exchange (for example, 1 is equal to 10 tenths) and in terms of scaling (for example, 1 is ten times the size of 1 tenth).	6NPV-1 Understand the relationship between powers of 10 from 1 hundredth to 10 million, and use this to make a given number 10, 100, 1,000, 1 tenth, 1 hundredth or 1 thousandth times the size (multiply and divide by 10,100 and 1,000).	Understand and use place value for decimals, measures, and integers of any size. Interpret and compare numbers in standard form $A \times 10^{n} 1 \leq A<10$, where n is a positive or negative integer or zero.
Recognise the place value of each digit in numbers with units from thousands to hundredths and compose and decompose these numbers using standard and nonstandard partitioning.	6NPV-2 Recognise the place value of each digit in numbers up to 10 million, including decimal fractions, and compose and decompose numbers up to 10 million using standard and nonstandard partitioning.	Understand and use place value for decimals, measures, and integers of any size. Order positive and negative integers, decimals, and fractions. Use a calculator and other technologies to calculate results accurately and then interpret them appropriately.
Reason about the location of numbers between 0.01 and 9,999 in the linear number system. Round whole numbers to the nearest multiple of 1,000, 100 or 10, as appropriate. Round decimal fractions to the nearest whole number or nearest multiple of 0.01	6NPV-3 Reason about the location of any number up to 10 million, including decimal fractions, in the linear number system, and round numbers, as appropriate, including in contexts.	Order positive and negative integers, decimals, and fractions; use the number line as a model for ordering of the real numbers; use the symbols $=, \neq,<,>, \leq, \geq$ Round numbers and measures to an appropriate degree of accuracy (for example, to a number of decimal places or significant figures). Use approximation through rounding to estimate answers and calculate possible resulting errors expressed using inequality notation $a<x \leq b$

Year 5 conceptual prerequesite	Year 6 ready-toprogress criteria	Key stage 3 applications
Divide 1000, 100 and 1 into 2, 4,5 and 10 equal parts, and read scales/number lines with $2,4,5$ and 10 equal parts.	6NPV-4 Divide powers of 10 , from 1 hundredth to 10 million, into 2, 4, 5 and 10 equal parts, and read scales/number lines with labelled intervals divided into 2, 4,5 and 10 equal parts.	Use standard units of mass, length, time, money, and other measures, including with decimal quantities. Construct and interpret appropriate tables, charts, and diagrams.
Be fluent in all key stage 2 additive and multiplicative number facts (see Appendix: number facts fluency overview) and calculation. Manipulate additive equations, including applying understanding of the inverse relationship between addition and subtraction, and the commutative property of addition. Manipulate multiplicative equations, including applying understanding of the inverse relationship between multiplication and division, and the commutative property of multiplication.	6AS/MD-1 Understand that 2 numbers can be related additively or multiplicatively, and quantify additive and multiplicative relationships (multiplicative relationships restricted to multiplication by a whole number).	Understand that a multiplicative relationship between 2 quantities can be expressed as a ratio or a fraction. Express 1 quantity as a fraction of another, where the fraction is less than 1 and greater than 1. Interpret mathematical relationships both algebraically and geometrically. Interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning.
Make a given number (up to 9,999, including decimal fractions) 10, 100, 1 tenth or 1 hundredth times the size (multiply and divide by 10 and 100). Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 10, 100, 1 tenth or 1 hundredth). Manipulate additive equations. Manipulate multiplicative equations.	6AS/MD-1 Use a given additive or multiplicative calculation to derive or complete a related calculation, using arithmetic properties, inverse relationships, and place-value understanding.	Recognise and use relationships between operations including inverse operations. Use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships. Understand and use standard mathematical formulae; rearrange formulae to change the subject.

Year 5 conceptual prerequesite	Year 6 ready-toprogress criteria	Key stage 3 applications
Recall multiplication and division facts up to 12×12. Apply place-value knowledge to known additive and multiplicative number facts.	6AS/MD-3 Solve problems involving ratio relationships.	Use ratio notation, including reduction to simplest form. Divide a given quantity into 2 parts in a given part:part or part:whole ratio; express the division of a quantity into 2 parts as a ratio.
Be fluent in all key stage 2 additive and multiplicative number facts and calculation. Manipulate additive equations. Manipulate multiplicative equations. Find a fraction of a quantity.	6AS/MD-4 Solve problems with 2 unknowns.	Reduce a given linear equation in two variables to the standard form $y=m x+c$; calculate and interpret gradients and intercepts of graphs of such linear equations numerically, graphically and algebraically. Use linear and quadratic graphs to estimate values of y for given values of x and vice versa and to find approximate solutions of simultaneous linear equations.
Recall multiplication and division facts up to 12×12. Find factors and multiples of positive whole numbers, including common factors and common multiples. Find equivalent fractions and understand that they have the same value and the same position in the linear number system.	6F-1 Recognise when fractions can be simplified, and use common factors to simplify fractions.	Use the concepts and vocabulary of prime numbers, factors (or divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation property. Simplify and manipulate algebraic expressions by taking out common factors.

Year 5 conceptual prerequesite	Year 6 ready-toprogress criteria	Key stage 3 applications
Recall multiplication and division facts up to 12×12. Find factors and multiples of positive whole numbers. Find equivalent fractions. Reason about the location of fractions and mixed numbers in the linear number system.	6F-2 Express fractions in a common denomination and use this to compare fractions that are similar in value.	Order positive and negative integers, decimals and fractions. Use the 4 operations, including formal written methods, applied to integers, decimals, proper and improper fractions, and mixed numbers, all both positive and negative. Use and interpret algebraic notation, including: a / b in place of $a \div b$ coefficients written as fractions rather than as decimals.
Reason about the location of fractions and mixed numbers in the linear number system. Find equivalent fractions.	6F-3 Compare fractions with different denominators, including fractions greater than 1, using reasoning, and choose between reasoning and common denomination as a comparison strategy.	Order positive and negative integers, decimals, and fractions; use the number line as a model for ordering of the real numbers; use the symbols $=, \neq,<,>, \leq, \geq$
Find the perimeter of regular and irregular polygons. Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and draw angles of a given size. Compare areas and calculate the area of rectangles (including squares) using standard units.	6G-1 Draw, compose, and decompose shapes according to given properties, including dimensions, angles and area, and solve related problems.	Draw shapes and solve more complex geometry problems (see Mathematics programmes of study: key stage 3 - Geometry and measures).

